
Testing Hypotheses about Climate Prediction
at Unprecedented Resolutions

on the NSF Blue Waters System

Ross Heikes, David Randall

Dept. of Atmospheric Science
Colorado State University

Blue Waters Symposium – May 21-22, 2013

Tuesday, May 21, 2013

https://bluewaters.ncsa.illinois.edu/web/portal/symposium-may-2013
https://bluewaters.ncsa.illinois.edu/web/portal/symposium-may-2013

Outline.

1. Introduction to the model and grid -- boilerplate slides with lots of spheres.

2. Parallel scaling of the MPI portion of the model.

3. Experiences (so far) with the accelerators.

Tuesday, May 21, 2013

Icosahedral grid. Projecting to the sphere.

• Our models live on an icosahedral grid.
• Starting with an icosahedron (fig. 1)
• We can project the icosahedron onto a unit sphere (fig. 2) forming 20 spherical

triangles.

figure 1 figure 2

Tuesday, May 21, 2013

Icosahedral grid. Generating polyhedron.

• Each spherical triangles can be further partitioned into four spherical triangles.
• The algorithm can be applied recursively.
• These polyhedrons are used to generate the icosahedral grid.

20
triangles

80
triangles

360
triangles

Tuesday, May 21, 2013

Icosahedral grid.

• The vertices of the previous polyhedrons (shown here as blue points) are used
to generate the icosahedral grids. The vertices are called generating points.

• An area (Voronoi cell) on the sphere is associated with each generating point.

• This algorithm allows for an isotropic and homogeneous tiling of the sphere to
arbitrarily high resolution.

12 cells 42 cells 162 cells

Tuesday, May 21, 2013

resolution
(r)

number
of cells

global
grid point

spacing (km)

9 2,621,442 14.99

10 10,485,762 7.495

11 41,943,042 3.747

12 167,772,162 1.874

Unprecedented resolution. Counting the cells.

• Let r denote the number of applications of the subdivision algorithm, that is
partitioning one triangle into four triangles.

• Our target resolutions are:

• The vertical resolution depends on the horizontal resolution. The vertical
resolution is typically 32 to 256 layers.

Tuesday, May 21, 2013

∂ζ
∂t

+∇H i ζav() + ki∇H × w ∂v
∂z

⎛
⎝⎜

⎞
⎠⎟
+ J cpθ,π qs() + J cpθ,δπ() = Fζ

∂θ
∂t

+
1
ρqs

∇H i ρqsθv() −θ∇H i ρqsv()⎡⎣ ⎤⎦ +
1
ρqs

∂
∂z

ρqsθw() −θ ∂
∂z

ρqsw()⎡
⎣⎢

⎤
⎦⎥
=
Q
π qs

∂D
∂t

− J ζa ,χ() − ∇H i ζa∇Hψ() +∇H i w ∂v
∂z

⎛
⎝⎜

⎞
⎠⎟
+∇2K +∇H i cpθ∇Hπ qs() +∇H i cpθ∇Hδπ() = FD

Model equations of the dynamical core

• Vorticity

• Divergence

• Potential Temperature

• Several species of water

Tuesday, May 21, 2013

Example 1. Warm Bubble Test

• Initial condition is the 3D version of Mendez-Nunez and Carroll (1994)

• The initial bubble is 6.6K warmer than the environment.

• The globe is 6.37km in radius (1000×smaller)

• The modelʼs resolution is

- 163842 cells resulting in 63 m horizontally
- 160 levels resulting in 75 m vertically

Tuesday, May 21, 2013

Example 1. Warm Bubble Test

Tuesday, May 21, 2013

Example 2. Idealized tropical cyclone.

• Nonhydrostatic models
of the atmosphere with
moist physics.

• The animation shows the
horizontal track of the
cyclone.

• For example, Reed and
Jablonowski (2011)
idealized tropical cyclone
test case.

Tuesday, May 21, 2013

Parallel domain decomposition.

• An algorithm similar to the grid generation algorithm is used to partition the
sphere into quadrilateral regions.

• This domain decomposition is used to assign pieces of the grid to MPI tasks.

10 pieces 40 pieces20
triangles

Tuesday, May 21, 2013

Icosahedral grid. Parallel domain decomposition. Distribution to MPI tasks.

• Pieces of the grid are assigned to MPI tasks.
• MPI non-blocking sends/receives are used to update ghost regions (halo

regions) with data from neighboring processes.

Tuesday, May 21, 2013

• Each grid block requires information
from neighboring subdomains to fill
ghost cells.

• We can define parallel efficiency
to be:

• Larger parallel efficiency is better.

More useful work is done per ghost
cells.

Yellow cells belong to the local process

Blue cells are ghost cells filled from neighboring process

parallel efficiency ≈ number of local cells
number of ghost cells

Parallel efficiency

Tuesday, May 21, 2013

Parallel domain decomposition and parallel efficiency

block size
(parallel efficiency)

block size
(parallel efficiency)

number of MPI tasksnumber of MPI tasksnumber of MPI tasksnumber of MPI tasks
block size

(parallel efficiency)
block size

(parallel efficiency)
640 2560 10240 40960

resolution
(grid spacing)

9
(14.99 km)

64×64
(15.7)

32×32
(7.76)

16×16
(3.76)

resolution
(grid spacing)

10
(7.495 km)

128×128
(31.7)

64×64
(15.7)

32×32
(7.76)

16×16
(3.76)resolution

(grid spacing) 11
(3.747 km)

256×256
(63.7)

128×128
(31.7)

64×64
(15.7)

32×32
(7.76)

resolution
(grid spacing)

12
(1.874 km)

256×256
(63.7)

128×128
(31.7)

64×64
(15.7)

• We would like each MPI task to have a 32×32 cell block or a 64×64 cell block:

- Smaller. The parallel efficiency is bad.
- Bigger. Too much work per task

• For a given resolution increasing the number of tasks reduces parallel efficiency.

Tuesday, May 21, 2013

• The mathematical formulation of our prognostic equations requires solving
Poisson’s equation every time step in each model layer.

• The recursive structure of the grid facilitates the use of multigrid methods.

• This is most communication intensive portion of the model and challenging
to parallelize. The lessons learned can be apply to other parts of the model.

• There are two main parts to the multigrid algorithm:

(1) Relaxation sweep. Similar to a standard Jacobi iteration. Most expensive.

(2) Transferring information between grid resolutions. Less expensive.

2D multigrid

α i = ω i, j

j
∑ α i, j −ω iβi for all i = 1,2,…,N

prolongationrestriction
Tuesday, May 21, 2013

Parallel scaling with MPI on Blue Waters

• Plot show the time to do 10 multigrid v-cycles
• X-axis is number of MPI tasks. Y-axis is time. Both are log scale.
• Each blue line indicates a particular grid resolution. Grids 09, 10, 11 and 12.

• The red line is the idealized speed-up.
• For each resolution the red line and the blue line should be coincident.

number of MPI tasks

tim
e

(s
)

number of MPI tasks

Blue Waters
(XE nodes, CRAY compiler)

9

9

9

9

10

10

10

10

11

11

11

11

12

12

12

40 160 640 2560 10240 40960
0.0625

0.125

0.25

0.5

1.0

2.0

4.0

8.0

16.0

Blue Waters
(XE nodes, PGI compiler)

9

9

9

9

10

10

10 10

11

11

11
11

12

12

12

40 160 640 2560 10240 40960
0.0625

0.125

0.25

0.5

1.0

2.0

4.0

8.0

16.0

Tuesday, May 21, 2013

Parallel scaling with MPI. Comparisons.

BlueWaters (CRAY compiler)

Hopper (PGI compiler) Edison (INTEL compiler)

9

9

9

9

10

10

10

10

11

11

11

11

12

12

12

40 160 640 2560 10240 40960
0.0625

0.125

0.25

0.5

1.0

2.0

4.0

8.0

16.0

9

9

9

9

10

10

10

10

11

11

11

11

12

12

12

40 160 640 2560 10240 40960
0.0625

0.125

0.25

0.5

1.0

2.0

4.0

8.0

16.0

9

9

9

9

10

10

10

11

11

1212

40 160 640 2560 10240 40960
0.0625

0.125

0.25

0.5

1.0

2.0

4.0

8.0

16.0

BlueWaters (PGI compiler)

9

9

9

9

10

10

10 10

11

11

11
11

12

12

12

40 160 640 2560 10240 40960
0.0625

0.125

0.25

0.5

1.0

2.0

4.0

8.0

16.0• All the same code with
no heroic optimization.

• We can see:

- CRAY 2X faster than PGI on
BW.

- PGI scales better than CRAY
on BW.

- BW (PGI) and Hopper (PGI)
have similar time

- Hopper scales well.
- Edison scales well (but with

a relatively low number of
cores).

- Edison is pretty fast.

Tuesday, May 21, 2013

Multigrid on the accelerators.

 SUBROUTINE mltgrd2D_rlx (lvl,itermax,im0,jm0,km0,nsdm0,area,wght,beta,alph)

 DO iter = 1,itermax ! number of sweeps

 ENDDO ! iter

 END SUBROUTINE mltgrd2D_rlx

Relaxation Sweep

• We are very interested in modifying the code to use the accelerators.

• We focus on the relaxation sweep portion of the multigrid algorithm.
Experiments show this is the most expensive part of the code.

• The lessons learned can be apply to other parts of the model since the form of
the code mimics other finite-difference operators in the model.

• Schematically the pure MPI code looks like this:

MPI communication

Tuesday, May 21, 2013

Multigrid on the accelerators. The ideal best case with no MPI communication.

 SUBROUTINE mltgrd2D_rlx (lvl,itermax,im0,jm0,km0,nsdm0,area,wght,beta,alph)

!$acc data copyin (om1,om2,area,wght,beta) create (tmpry,work) copy (alph)

 DO iter = 1,itermax ! number of sweeps

!$acc kernels

!$acc end kernels

 ENDDO ! iter

!$acc end data

 END SUBROUTINE mltgrd2D_rlx

Relaxation Sweep

• Initially we can suppose no MPI communication was necessary. (Note that this
gives the wrong answer.) Add a few OpenACC directives.

• What speed-up can we expect running code on host vs. accelerator?

Tuesday, May 21, 2013

0 2 4 6 80.0

0.1

0.2

0.3

0.4

0.5

number of relaxation sweeps

tim
e
�s�

Multigrid on the accelerators. The ideal case with no MPI communication.

• Loading (unloading) the appropriate modules on the xk nodes, we can toggle to
run on host or accelerator.

• We can see the latency associated with transfer of data from the host to the
accelerator through the PCI express.

• But, when data is on the accelerator, it is very fast. Blue line very flat. Amazing.

• Typically 3 or 4 sweeps are optimal. So, 2.5× speed-up.

128×128×32
● run on host
● run on device

Tuesday, May 21, 2013

Multigrid on the accelerators. With MPI communication.

 SUBROUTINE mltgrd2D_rlx (lvl,itermax,im0,jm0,km0,nsdm0,area,wght,beta,alph)

!$acc data copyin (om1,om2,area,wght,beta) create (tmpry,work) copy (alph)

 DO iter = 1,itermax ! number of sweeps

!$acc update device (alph(1:im0-1, 1 ,:,:))
!$acc update device (alph(im0 ,1:jm0-1,:,:))
!$acc update device (alph(2:im0 , jm0 ,:,:))
!$acc update device (alph(1 ,2:jm0 ,:,:))

!$acc kernels

!$acc end kernels

!$acc update host (alph(2:im0-2, 2 ,:,:))
!$acc update host (alph(im0-1,2:jm0-2,:,:))
!$acc update host (alph(3:im0-1, jm0-1,:,:))
!$acc update host (alph(2 ,3:jm0-1,:,:))

 ENDDO ! iter

!$acc end data

 END SUBROUTINE mltgrd2D_rlx

Relaxation Sweep

• Now we include the MPI and use the !$acc update directive:

MPI communication

Tuesday, May 21, 2013

Multigrid on the accelerators. With MPI communication.

0 2 4 6 80.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

number of relaxation sweeps

tim
e
�s�

0 2 4 6 80.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

number of relaxation sweeps

tim
e
�s�

0 2 4 6 80.0

0.1

0.2

0.3

0.4

0.5

number of relaxation sweeps

tim
e
�s�

128×128×32
● run on host
● run on device

64×64×32
● run on host
● run on device

32×32×32
● run on host
● run on device

• The speed-up depends on the block size.
Less speed-up on smaller blocks.

• This will become an issue on coarser grid
resolution within the multigrid v-cycle.

• Coarser grids may run exclusively on the
host

Tuesday, May 21, 2013

Multigrid on the accelerators. Possible solution.

• Transpose the model blocks and columns so that blocks become bigger.
• Hopefully the speed-up will outweigh the additional communication.

Each task has a
 4×4×16 block

Each task has a
 16×16×4 block

Tuesday, May 21, 2013

Summary.

• Still some things to figure out with MPI scaling.

• The multigrid algorithm is somewhat limited by the amount of useful work
done per MPI communication. Possible solutions:

- Data transpose
- Asynchronous work. Host performs MPI communication while

simultaneously the accelerator is doing relaxation.
- Duplicate some calculation on the host and accelerator to avoid the need

for OpenACC updates every relaxation sweep.

Tuesday, May 21, 2013

