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Outline.

1. Introduction to the model and grid -- boilerplate slides with lots of spheres.

2. Parallel scaling of the MPI portion of the model.

3. Experiences (so far) with the accelerators.
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Icosahedral grid.  Projecting to the sphere.

• Our models live on an icosahedral grid.
• Starting with an icosahedron (fig. 1)
• We can project the icosahedron onto a unit sphere (fig. 2) forming 20 spherical 

triangles.

figure 1 figure 2
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Icosahedral grid.  Generating polyhedron.

• Each spherical triangles can be further partitioned into four spherical triangles.
• The algorithm can be applied recursively.
• These polyhedrons are used to generate the icosahedral grid.

20
triangles

80
triangles

360
triangles
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Icosahedral grid.

• The vertices of the previous polyhedrons (shown here as blue points) are used 
to generate the icosahedral grids.   The vertices are called generating points.

• An area (Voronoi cell) on the sphere is associated with each generating point.

• This algorithm allows for an isotropic and homogeneous tiling of the sphere to 
arbitrarily high resolution.

12 cells 42 cells 162 cells
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resolution
(r)

number
of cells

global
grid point

spacing (km)

9 2,621,442 14.99

10 10,485,762 7.495

11 41,943,042 3.747

12 167,772,162 1.874

Unprecedented resolution.  Counting the cells.

• Let r denote the number of applications of the subdivision algorithm, that is 
partitioning one triangle into four triangles.

• Our target resolutions are:

• The vertical resolution depends on the horizontal resolution.  The vertical 
resolution is typically 32 to 256 layers.
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Model equations of the dynamical core

• Vorticity

• Divergence

• Potential Temperature

• Several species of water
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Example 1.  Warm Bubble Test

• Initial condition is the 3D version of Mendez-Nunez and Carroll (1994)

• The initial bubble is 6.6K warmer than the environment.

• The globe is 6.37km in radius (1000×smaller)

• The modelʼs resolution is 

- 163842 cells resulting in 63 m horizontally
- 160 levels resulting in 75 m vertically 
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Example 1.  Warm Bubble Test
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Example 2.  Idealized tropical cyclone.

• Nonhydrostatic models 
of the atmosphere with 
moist physics.

• The animation shows the 
horizontal track of the 
cyclone.

• For example, Reed and 
Jablonowski (2011) 
idealized tropical cyclone 
test case.
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Parallel domain decomposition.

• An algorithm similar to the grid generation algorithm is used to partition the 
sphere into quadrilateral regions.

• This domain decomposition is used to assign pieces of the grid to MPI tasks.

10 pieces 40 pieces20
triangles
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Icosahedral grid.  Parallel domain decomposition.  Distribution to MPI tasks.

• Pieces of the grid are assigned to MPI tasks.
• MPI non-blocking sends/receives are used to update ghost regions (halo 

regions) with data from neighboring processes.
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• Each grid block requires information 
from neighboring subdomains to fill 
ghost cells.

• We can define  parallel efficiency 
to be:

• Larger parallel efficiency is better.  

More useful work is done per ghost 
cells.

Yellow cells belong to the local process

Blue cells are ghost cells filled from neighboring process

parallel efficiency ≈ number of local cells
number of ghost cells

Parallel efficiency
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Parallel domain decomposition and parallel efficiency

block size
(parallel efficiency)

block size
(parallel efficiency)

number of MPI tasksnumber of MPI tasksnumber of MPI tasksnumber of MPI tasks
block size

(parallel efficiency)
block size

(parallel efficiency)
640 2560 10240 40960

resolution
(grid spacing)

9
(14.99 km)

64×64
(15.7)

32×32
(7.76)

16×16
(3.76)

resolution
(grid spacing)

10
(7.495 km)

128×128
(31.7)

64×64
(15.7)

32×32
(7.76)

16×16
(3.76)resolution

(grid spacing) 11
(3.747 km)

256×256
(63.7)

128×128
(31.7)

64×64
(15.7)

32×32
(7.76)

resolution
(grid spacing)

12
(1.874 km)

256×256
(63.7)

128×128
(31.7)

64×64
(15.7)

• We would like each MPI task to have a 32×32 cell block or a 64×64 cell block:

- Smaller.   The parallel efficiency is bad.
- Bigger.   Too much work per task

• For a given resolution increasing the number of tasks reduces parallel efficiency.
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• The mathematical formulation of our prognostic equations requires solving 
Poisson’s equation every time step in each model layer.

• The recursive structure of the grid facilitates the use of multigrid methods.

• This is most communication intensive portion of the model and challenging 
to parallelize.  The lessons learned can be apply to other parts of the model.

• There are two main parts to the multigrid algorithm:

(1)  Relaxation sweep.   Similar to a standard Jacobi iteration.  Most expensive.

(2)  Transferring information between grid resolutions.   Less expensive.

2D multigrid

  
α i = ω i, j

j
∑ α i, j −ω iβi for all i = 1,2,…,N

prolongationrestriction
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Parallel scaling with MPI on Blue Waters

• Plot show the time to do 10 multigrid v-cycles
• X-axis is number of MPI tasks.  Y-axis is time.  Both are log scale.
• Each blue line indicates a particular grid resolution. Grids 09, 10, 11 and 12.

• The red line is the idealized speed-up.  
• For each resolution the red line and the blue line should be coincident.
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Parallel scaling with MPI.   Comparisons.
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16.0• All the same code with 
no heroic optimization.

• We can see:

- CRAY 2X faster than PGI on 
BW.

- PGI scales better than CRAY 
on BW.

- BW (PGI) and Hopper (PGI) 
have similar time

- Hopper scales well.
- Edison scales well (but with 

a relatively low number of 
cores).

- Edison is pretty fast.
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Multigrid on the accelerators.

   SUBROUTINE mltgrd2D_rlx (lvl,itermax,im0,jm0,km0,nsdm0,area,wght,beta,alph)

   DO iter = 1,itermax ! number of sweeps

   ENDDO ! iter

   END SUBROUTINE mltgrd2D_rlx

Relaxation Sweep

• We are very interested in modifying the code to use the accelerators.

• We focus on the relaxation sweep portion of the multigrid algorithm. 
Experiments show this is the most expensive part of the code.

• The lessons learned can be apply to other parts of the model since the form of 
the code mimics other finite-difference operators in the model.

• Schematically the pure MPI code looks like this:

MPI communication
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Multigrid on the accelerators.  The ideal best case with no MPI communication.

   SUBROUTINE mltgrd2D_rlx (lvl,itermax,im0,jm0,km0,nsdm0,area,wght,beta,alph)

!$acc data copyin (om1,om2,area,wght,beta) create (tmpry,work) copy (alph)

   DO iter = 1,itermax ! number of sweeps

!$acc kernels

 

!$acc end kernels

   ENDDO ! iter

!$acc end data

   END SUBROUTINE mltgrd2D_rlx

Relaxation Sweep

• Initially we can suppose no MPI communication was necessary.  (Note that this 
gives the wrong answer.)  Add a few OpenACC directives.

• What speed-up can we expect running code on host vs. accelerator?
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tim
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Multigrid on the accelerators.  The ideal case with no MPI communication.

• Loading (unloading) the appropriate modules on the xk nodes, we can toggle to 
run on host or accelerator.

• We can see the latency associated with transfer of data from the host to the 
accelerator through the PCI express.

• But, when data is on the accelerator, it is very fast.  Blue line very flat.   Amazing.

• Typically 3 or 4 sweeps are optimal.  So,  2.5× speed-up.

128×128×32
● run on host
● run on device
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Multigrid on the accelerators.  With MPI communication.

      SUBROUTINE mltgrd2D_rlx (lvl,itermax,im0,jm0,km0,nsdm0,area,wght,beta,alph)

!$acc data copyin (om1,om2,area,wght,beta) create (tmpry,work) copy (alph)

   DO iter = 1,itermax ! number of sweeps

     

!$acc update device (alph(1:im0-1, 1     ,:,:))
!$acc update device (alph(  im0  ,1:jm0-1,:,:))
!$acc update device (alph(2:im0  ,  jm0  ,:,:))
!$acc update device (alph(   1   ,2:jm0  ,:,:))

!$acc kernels

!$acc end kernels

!$acc update host (alph(2:im0-2, 2     ,:,:))
!$acc update host (alph(  im0-1,2:jm0-2,:,:))
!$acc update host (alph(3:im0-1,  jm0-1,:,:))
!$acc update host (alph(   2   ,3:jm0-1,:,:))

   ENDDO ! iter

!$acc end data

   END SUBROUTINE mltgrd2D_rlx

Relaxation Sweep

• Now we include the MPI and use the !$acc update directive:

MPI communication
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Multigrid on the accelerators.  With MPI communication.
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128×128×32
● run on host
● run on device

64×64×32
● run on host
● run on device

32×32×32
● run on host
● run on device

• The speed-up depends on the block size.  
Less speed-up on smaller blocks.

• This will become an issue on coarser grid 
resolution within the multigrid v-cycle.

• Coarser grids may run exclusively on the 
host
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Multigrid on the accelerators.  Possible solution.

• Transpose the model blocks and columns so that blocks become bigger.
• Hopefully the speed-up will outweigh the additional communication.

Each task has a
 4×4×16 block

Each task has a
 16×16×4 block
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Summary.

• Still some things to figure out with MPI scaling.

• The multigrid algorithm is somewhat limited by the amount of useful work 
done per MPI communication.   Possible solutions:

- Data transpose
- Asynchronous work.  Host performs MPI communication while 

simultaneously the accelerator is doing relaxation.
- Duplicate some calculation on the host and accelerator to avoid the need 

for OpenACC updates every relaxation sweep.
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